COMMD1 downregulates the epithelial sodium channel through Nedd4-2.

نویسندگان

  • Ying Ke
  • A Grant Butt
  • Marianne Swart
  • Yong Feng Liu
  • Fiona J McDonald
چکیده

The epithelial sodium channel (ENaC) is important for the long-term control of Na(+) homeostasis and blood pressure. Our previous studies demonstrated that Copper Metabolism Murr1 Domain-containing protein 1 (COMMD1; previously known as Murr1), a protein involved in copper metabolism, inhibited amiloride-sensitive current in Xenopus laevis oocytes expressing ENaC (J Biol Chem 279: 5429, 2004). In this study, we report that COMMD1 inhibits amiloride-sensitive current in mammalian epithelial cells expressing ENaC, that the COMM domain of COMMD1 is sufficient for this effect, and that knockdown of COMMD1 increases amiloride-sensitive current. COMMD1 is coexpressed with ENaC in rat kidney medulla cells. COMMD1 increased ubiquitin modification of ENaC and decreased its cell surface expression. COMMD1 abolished insulin-stimulated amiloride-sensitive current and attenuated the stimulation of current by activated serum and glucocorticoid-regulated kinase (SGK1). COMMD1 was found to interact with both SGK1 and Akt1/protein kinase B, and knockdown of COMMD1 enhanced the stimulatory effect of both SGK1 and Akt1 on amiloride-sensitive current. COMMD1's effects were reduced in the presence of ENaC proteins containing PY motif mutations, abolished in the presence of a dominant negative form of Nedd4-2, and knockdown of COMMD1 reduced the inhibitory effect of Nedd4-2 on ENaC, but did not enhance current when Nedd4-2 was knocked down. These data suggest that COMMD1 modulates Na(+) transport in epithelial cells through regulation of ENaC cell surface expression and this effect is likely mediated via Nedd4-2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional interaction of COMMD3 and COMMD9 with the epithelial sodium channel.

The epithelial sodium channel (ENaC) plays an important role in controlling Na⁺ homeostasis, extracellular fluid volume, and blood pressure. Copper metabolism Murr1 domain-containing protein 1 (COMMD1) interacts with ENaC and downregulates ENaC. COMMD1 belongs to the COMMD family consisting of COMMD1-10, and all COMMD family members share a C-terminal COMM domain. Here, we report that COMMD2-10...

متن کامل

COMMD1-Mediated Ubiquitination Regulates CFTR Trafficking

The CFTR (cystic fibrosis transmembrane conductance regulator) protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion...

متن کامل

Interaction of Serum- and Glucocorticoid Regulated Kinase 1 (SGK1) with the WW-Domains of Nedd4-2 Is Required for Epithelial Sodium Channel Regulation

BACKGROUND The epithelial sodium channel (ENaC) is an integral component of the pathway for Na(+) absorption in epithelial cells. The ubiquitin ligases Nedd4 and Nedd4-2 bind to ENaC and decrease its activity. Conversely, Serum- and Glucocorticoid regulated Kinase-1 (SGK1), a downstream mediator of aldosterone, increases ENaC activity. This effect is at least partly mediated by direct interacti...

متن کامل

Enhanced expression of epithelial sodium channels causes salt-induced hypertension in mice through inhibition of the α2-isoform of Na+, K+-ATPase

Knockout of the Nedd4-2 gene in mice results in overexpression of epithelial sodium channels (ENaC) on the plasma membrane in the kidney, choroid plexus and brain nuclei. These mice exhibit enhanced pressor responses to CSF [Na(+)] as well as dietary salt-induced hypertension which both can be blocked by central infusion of the ENaC blocker benzamil. Functional studies suggest that ENaC activat...

متن کامل

Regulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4-2.

Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na(+) channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 298 6  شماره 

صفحات  -

تاریخ انتشار 2010